Sensitivity to Longitudinal VBS at 100 TeV

Aram Apyan¹, Chilufya Mwewa², Luka Nedic³, Marc-Andre Pleier², Karolos Potamianos³

Brandeis University¹, BNL², University of Oxford³

BNL Snowmass retreat day

17 December 2021

Introduction

- Aim: Study the sensitivity to longitudinal Vector Boson Scattering (VBS) at a 100 TeV hadron collider
 - > An important medium to test electroweak symmetry breaking (Higgs contribution cancels divergences)
 - ➤ Also sensitive to benchmark models such as a doubly charged Higgs
- We will explore the fully leptonic $W^{\pm}W^{\pm}$ jj channel
 - > offers the largest electroweak to strong production cross-section ratio among VBS processes

Signature

2 same-sign leptons, large MET, 2 forward jets

We will measure all polarization fractions:

- ➤ Both W's longitudinally polarized (LL channel)
- One W is longitudinally polarized, the other is transversely polarized (LT+TL channel)
- Both W's are transversely polarized (TT channel)

Backgrounds

- Only same sign WW QCD, WZ (QCD and EW) and tZq backgrounds are considered for now
- All detector-specific backgrounds (charge-flip, fakes)
 will be ignored
- However, we could also scale up the Monte Carlo to reflect something similar to the composition in the 13TeV ATLAS analysis
- WZ was the dominant background in ATLAS' 13 TeV same sign WW <u>analysis</u>
- All other smaller backgrounds will be ignored entirely

Background composition in 13 TeV same sign WW analysis in ATLAS

Status and plans

- Our primary goal is the sensitivity measurement to longitudinal VBS but we'll measure all polarization fractions
 - > Additional studies such as sensitivity to doubly charged Higgs might be followed up in a separate paper
- Production of signal sample is in progress
 - > So far, we have generated all signal samples and performed some basic generator level validation (more on next slides)
 - ➤ We use MG5 3.1.1+ PYTHIA8 and run through Delphes (a generic FCC detector)
- For background processes, we have generated ssWW QCD, WZ EW and QCD samples. tZq is in progress
 - Validation of these samples is also in progress
 - We have also contributed to the validation of central samples (more on next slides)
- For analysis, we are developing part of the analysis framework
 - > Some of the analysis chain will use an already existing BNL framework (also used for the <u>yellow report</u>)
 - Currently just working with rivet for our validation studies

Signal sample details

Generator used: MADGRAPH5 3.1.1+PYTHIA8 with dipole recoil ON

PDF set: NNPDF2.3 NLO

Number of events generated: 200K per sample

C.M energy: 100 TeV

Generator cuts

- Lepton $p_T > 10 \text{ GeV}$
- Jet p_T > 10 GeV
- $m_{ij} > 300 \, \text{GeV}$

Sample	Cross-section
Inclusive	0.778 pb
LL	0.064 pb
LT+TL	0.245 pb
TT	0.470 pb
LL+LT+TL+TT	0.779 pb

Cross sections defined in the WW center of mass frame

Cuts applied for validation in same-sign WW rivet routine

- 2 same-sign leptons, $p_T^l > 20 \text{ GeV}$
- nJets \geq 2, $p_T^j > 30$ GeV, $|\eta_j| < 4.5$
- $m_{jj} > 500 \text{ GeV}$
- Min $\Delta R_{ll} > 0.3$
- MET > 40 GeV

Validation of signal samples

- This validation compares the inclusive sample to the combination of the individual polarizations
- ➤ The cross-sections match and all other distributions are similar. Plots will be re-done with higher statistics

Validation of WZ EW samples

- Generated with same setup as signal samples, but with m_{ll} > 60 GeV
- WZ EW cross-section: 1.34 pb

- These distributions are a comparison between WZ EW and ssWW EW
- > Same rivet routine is used but without the same sign cut
- > As expected, the two samples are similar and there's a clear Z peak in the mll distribution

Validation of central samples

- > The MC_JETS rivet routine was used for these plots and the comparison is made to FCC samples
- Disagreement between the two samples was quite obvious
- > This validation also led to the realization that there was no parton matching done in Pythia
- > The current samples are therefore not usable and a production of new samples is in progress
- > New production also includes some other features that were planned before

Summary

- ✓ Focusing only on the sensitivity measurement to longitudinal VBS
- ✓ However, we will measure all polarization fractions
- ✓ Production of signal samples is done and their validation is progressing well
- ✓ Production and validation of background samples is also progressing well
- ✓ Development of part of the analysis framework is in progress
- ✓ For part of the analysis chain, we will use an already existing BNL framework
- ✓ We have contributed to the validation of central background samples
- ✓ No parton matching was done in Pythia for central samples and a new production is underway.
- ❖ We expect to be ready with the white paper result by March 2022
- Expect to continue studies on benchmark models such as a doubly charged Higgs

Back-up

Signal sample details

- Generator used: MADGRAPH5 3.1.1+PYTHIA8 with dipole recoil ON
- Generated processes:

```
o generate pp > j j W^+W^+ QCD = 0 QED = 4, W^+ \to l^+ v_l

o generate pp > j j W^+\{0\} W^+\{0\} QCD = 0 QED = 4, W^+ \to l^+ v_l

o generate pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to l^+ v_l

o add process pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to l^+ v_l, W^+ \to l^+ v_l

o add process pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to ta^+ v_l, W^+ \to l^+ v_l

o generate pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to ta^+ v_l
```

- For each sample, we add a process for the W^-W^- case
- Note: decay to taus has to be added separately for the mixed polarizations. see <u>launchpad</u>
 - > taus are also not included in the particle definition. E.g we use "define I+ = e+ mu+"
- PDF set: NNPDF2.3 NLO
- Number of events generated: 200K per sample
- C.M energy: 100 TeV

Central background samples

Dataset name	Physics process
$\mathrm{Bj}\text{-}4\mathrm{p}$	γ or on-shell W,Z
Bjj-vbf-4p	γ or off-shell W,Z,H in VBF topology
BB-4p	Diboson (γ, W, Z) processes
BBB-4p	Tri-boson (γ, W, Z) processes including BH
LL-4p	Non-resonant dileptons (including neutrinos)
LLB-4p	Non-resonant dileptons with an on-shell boson
H-4p	Higgs
tj-4p	Single top (s- and t-channel)
${ m tB-4p}$	Single top associated with a boson
tt-4p	$tar{t}$ pair production
${ m ttB-4p}$	$t\bar{t}$ associated with γ, W, Z, H

Central samples: Validation Procedure

- ❖ Validation involved comparing snowmass (MCProd) samples to fcc-hh samples at truth level
- Example: ttbar sample
- Number of events: 10,000
- fcc-hh: /eos/experiment/fcc/hh/generation/lhe/mg_pp_tt012j_5f/events_022118229.lhe.gz
 - > eos is not mounted on the snowmass cluster
 - > Sample was thus copied to BNL cluster and converted to hepmo
 - > Run through some generic and same-sign WW rivet routines
- MCProd: /collab/project/snowmass21/data/smmc/v0.1/r1/100TeV_tt.tar.gz/mgstep/out_5423_13.lhe.gz
 - Converted to hepmc on the snowmass machine and copied to BNL cluster
 - > Run through some generic and same-sign WW rivet routines

Differences between fcc-hh and Mcprod samples

Fcc-hh sample	MC prod sample
MG v2.5.4	MG v3.1.1
Lhaid: 260000 (NNPDF3.0 NLO)	Lhaid: 230000 (NNPDF2.3 NLO)
Jet pT > 5 GeV	Jet pT > 20 GeV
Lepton pT > 5 GeV	-
Jet eta < 8	Jet eta < 5
Lepton eta < 8	-
MII > 20 GeV	-
Xqcut: 60	Xqcut: 30
Cross-section: 0.40×10 ⁵ pb	Cross-section: 1.03×10 ⁵ pb